Inapproximability of Stable Marriage Problems
نویسندگان
چکیده
The stable marriage problem has received considerable attention both due to its practical applications as well as its mathematical structure. While the original problem has all participants rank all members of the opposite sex in a strict order of preference, two natural variations are to allow for incomplete preference lists and ties in the preferences. Both variations are polynomially solvable by a variation of the classical algorithm of Gale and Shapley. On the other hand, it has recently been shown to be NP-hard to nd a maximum cardinality stable matching when both of the variations are allowed. We show here that it is APX-hard to approximate the maximum cardinality stable matching with incomplete lists and ties. This holds for some very restricted instances both in terms of lengths of preference lists and lengths and occurrences of ties in the lists. We also obtain optimal (N) hardness results for 'egalitarian' and 'minimum regret' variants.
منابع مشابه
Inapproximability Results on Stable Marriage Problems
The stable marriage problem has received considerable attention both due to its practical applications as well as its mathematical structure. While the original problem has all participants rank all members of the opposite sex in a strict order of preference, two natural variations are to allow for incomplete preference lists and ties in the preferences. Both variations are polynomially solvabl...
متن کاملStable Marriage and Roommates Problems with Restricted Edges: Complexity and Approximability
In the Stable Marriage and Roommates problems, a set of agents is given, each of them having a strictly ordered preference list over some or all of the other agents. A matching is a set of disjoint pairs of mutually acceptable agents. If any two agents mutually prefer each other to their partner, then they block the matching, otherwise, the matching is said to be stable. We investigate the comp...
متن کاملA New Approach to Stable Matching Problems
We show that Stable Matching problems are the same as problems about stable configurations of X-networks. Consequences include easy proofs of old theorems, a new simple algorithm for finding a stable matching, an understanding of the difference between Stable Marriage and Stable Roommates, NTcompleteness of Three-party Stable Marriage, CC-completeness of several Stable Matching problems, and a ...
متن کاملStable marriage problems with quantitative preferences
The stable marriage problem is a well-known problem of matching men to women so that no man and woman, who are not married to each other, both prefer each other. Such a problem has a wide variety of practical applications, ranging from matching resident doctors to hospitals, to matching students to schools or more generally to any two-sided market. In the classical stable marriage problem, both...
متن کاملOn Treewidth and Stable Marriage
Stable Marriage is a fundamental problem to both computer science and economics. Four well-known NP-hard optimization versions of this problem are the Sex-Equal Stable Marriage (SESM), Balanced Stable Marriage (BSM), max-Stable Marriage with Ties (max-SMT) and min-Stable Marriage with Ties (min-SMT) problems. In this paper, we analyze these problems from the viewpoint of Parameterized Complexit...
متن کامل